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A B S T R A C T

This study compares three different methodologies for the quantification of the fat content of ultra-high tem
perature (UHT) milk using benchtop proton nuclear magnetic resonance (1H NMR) spectroscopy, a flagship of 
green, accessible, and state-of-the-art technology suitable for modern laboratory environments. The evaluated 
approaches included traditional calibration curve and machine learning algorithms, with emphasis on partial 
least squares regression (PLS-R) and artificial neural networks (ANN), to estimate the fat content in skimmed, 
semi-skimmed and whole milk. Among these, ANN provided the most accurate results for all types of milk, 
particularly in skimmed milk, with a relative standard deviation (RSD) of 14.9% and an accuracy of − 7.3%. The 
calibration curve showed higher variability, with an RSD of 34.1% and trueness of 25.3% for skimmed milk. PLS- 
R improved accuracy in relation to the calibration curve approach, reducing RSD to 18.9% and trueness to 
− 17.7%. The developed method has been successfully applied to determine the fat content in 51 samples of UHT 
milk purchased in different Spanish supermarkets, providing adequate results for each of the three categories 
considered, including goat’s milk, sheep’s milk, and milk coffee. Furthermore, the application of machine 
learning has proven its validity by successfully distinguishing between lactose and lactose-free UHT milk.

1. Introduction

In the modern dairy industry, the assessment of fat content in food 
matrices, such as ultra-high-temperature (UHT) cow’s milk, is of para
mount importance. UHT milk, characterized by its sterilization process 
that involves heating to temperatures above 135 ◦C for a short period of 
time (typically 2–5 s), is specifically designed to eliminate microbial life, 
including spores. This process significantly extends the shelf life of milk, 
allowing it to be stored without refrigeration until it is opened (Tamime, 
2008). The widespread popularity of UHT milk has led to its increased 
availability and consumption around the world, with a notable presence 
in countries such as Spain, where 95% of the milk consumed is UHT 
(Aquini & Gil, 2017). These factors highlight the importance of UHT 
milk in ensuring food safety, improving accessibility, and meeting 
consumer preferences.

Based on the importance of UHT milk, Regulation (EU) No. 1308/ 

2013 sets strict EU standards for milk fat labelling. Therefore, whole 
milk must contain at least 3.25 g/100 mL milk fat, semi-skimmed be
tween 1.5 g/100 mL and 1.8 g/100 mL, and skimmed milk less than 0.5 
g/100 mL (Amaral et al., 2018). These rules are designed to maintain 
transparency, support consumer choice, and ensure fair competition.

For the analysis of the fat content in milk and dairy products, various 
analytical techniques are employed. The most widely adopted method 
involves gas chromatography coupled with flame ionization detection 
(GC-FID). This technique is particularly valued for its ability to separate 
and analyze the composition of fatty acids (FAs), although it requires 
extensive sample preparation (Danudol & Judprasong, 2022). Another 
variant of this determination involves the coupling of GC with mass 
spectrometry (GC-MS), which improves the specificity and sensitivity of 
the analysis, but it comes with higher complexity and cost (Chen et al., 
2023). In addition to these chromatographic techniques, near-infrared 
spectroscopy (NIRS) (Evangelista et al., 2021) and Raman 
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spectroscopy (Reiner et al., 2020) are well established as 
non-destructive methods for the analysis of FA in milk and dairy prod
ucts, although they can compromise on specificity and sensitivity due to 
fluorescence interferences. Each of these methods has its own set of 
applications, advantages, and limitations, which makes the choice of 
method dependent on the specific requirements of the analysis.

The introduction of nuclear magnetic resonance (NMR) spectros
copy, specifically proton NMR (1H NMR), as an alternative to analyze 
the fat content of milk and dairy products, brings significant benefits. 
Previous studies have successfully applied high-resolution NMR tech
niques for quantifying milk fat using various strategies, such as two- 
dimensional NMR (Hu et al., 2007), time-domain (P. M. Santos et al., 
2016) or regression models (Monakhova et al., 2012), proving the 
technique’s efficacy. However, benchtop NMR technology is a recent 
advancement and its application in this context is currently under 
investigation.

Benchtop NMR instruments, with their reduced size, make this so
phisticated technique more accessible to smaller laboratories and pro
duction facilities, facilitating more frequent and extensive testing 
(Draper & McCarney, 2023; Galvan et al., 2021; van Beek, 2021). These 
cost-effective versions of traditional high-resolution NMR systems offer 
a viable option for routine analyses. NMR spectroscopy enables the 
direct and non-destructive quantification of various components in 
complex mixtures like dairy products, eliminating the need for extensive 
sample preparation or chemical reagents (Burger et al., 2022). The use 
of benchtop NMR also aligns with the industry’s move toward more 
rapid and efficient testing methodologies that can provide real-time data 
for quality control and assurance processes (Ezeanaka et al., 2019).

So far, some studies have been published on cow UHT milk using 
benchtop NMR. Soyler et al. differentiated milk samples based on 
properties such as glycerol, fat, and sugar content using NMR spectra 
combined with an artificial neural network (ANN) model (Soyler et al., 
2021). In another study, a method focused on T2 relaxation times 
(acquisition of the time domain) for determining the fat content (be
tween 0.1 g/100 mL and 9 g/100 mL) in milk. This approach required a 
contrast solution consisting of a 6 g/100 mL NaCl solution containing 2 
g/100 mL sodium ferric ethylenediaminetetraacetate (Fe-EDTA) to 
adapt the relaxation rate of water (Sørensen et al., 2022). It is important 
to clarify that the distinction between studies does not imply superiority 
to one over the other; rather, it highlights divergent methodological 
choices based on different research objectives and applications.

Quantitative NMR, including both high and low resolution mea
surements, working with different regions of the spectra, has been 
applied to simultaneously measure different components in various 
dairy products (Hatzakis, 2019). To achieve this, one of the most 
commonly used methodologies involves the use of calibration curves, 
where known standards are plotted against their responses to determine 
concentrations, guided by current validation guidelines (Bharti & Roy, 
2012). Machine learning, especially through regression models, offers a 
more specific approach to complex data that may not fit simple uni
variate linear relationships. Within machine learning, ANNs stand out 
by emulating human neural networks, allowing for pattern recognition 
within large datasets that might elude conventional statistical methods 
(da Costa et al., 2021; Joshi, 2023; M. C. Santos et al., 2019). Each of 
these quantification methods has its own set of advantages and appli
cations, often chosen based on the specific requirements of the analysis, 
the complexity of the sample matrix, and the available instrumentation 
and computational resources.

In the case of regression models applied within machine learning 
contexts, particularly in chemometric studies using NMR, partial least 
squares regression (PLS-R) stands out as one of the most commonly 
utilized and robust methods, especially valued for its ability to handle 
highly collinear and multidimensional data typical of NMR studies. The 
popularity of PLS-R stems from its dual ability to perform dimensionality 
reduction and regression simultaneously (Dhaulaniya et al., 2020; Gal
van et al., 2021; Huang et al., 2022). In addition to PLS-R, other models 

such as support vector machines (SVM) (Hou et al., 2019) or random 
forests (RF) (Zhao et al., 2019) have also been used. However, the choice 
of model is just the beginning, and adherence to specialized validation 
guidelines, such as those from EUROLAB (Schönberger et al., 2015), is 
essential for ensuring the model’s reliability and generalizability.

For ANN, the model design process is even more sophisticated, given 
the complexity and “black box” nature of these models. In addition to 
generalization, optimization of ANNs involves optimizing the network 
architecture, including the number of layers and nodes, and tuning 
hyperparameters, such as the learning rate and regularization terms 
(Debik et al., 2022). To the best of our knowledge, there are no guide
lines that address the optimization or validation of ANN based quanti
fication methods. However, it is possible to cover this issue from the 
point of view of validation of chemometric methods (Benzaama et al., 
2022; Taylor, 2006). Cross-validation techniques, such as k-fold 
cross-validation, are commonly employed to ensure that the model’s 
performance is robust across different subsets of the data (Corsaro et al., 
2022; Pomyen et al., 2020).

Attempting to address the differences between measurement 
methods and offering a rigorous approach applicable to contemporary 
analytical problems, this study compares three methods to quantify the 
content of UHT milk fat using desktop NMR: traditional calibration 
curves, and machine learning from PLS-R to ANN (deep learning). In 
addition to analyzing their benefits, limitations, and validation to 
identify the most accurate, efficient, and reliable approach to improve 
quality control in the dairy industry, an analysis of environmental sus
tainability was also carried out. This demonstrates the synergy between 
these types of studies and their alignment with green analytical chem
istry principles, showcasing our commitment to promoting sustainable 
practices within analytical research.

2. Materials, reagents, and methods

2.1. Milk samples and sample preparation

A total of 55 milk and dairy product samples were collected from 
different Spanish supermarkets. Table S-1 shows the samples randomly 
ordered as analyzed. The samples included different types of fat content: 
skimmed (14), semi-skimmed (23), and whole (18), with fat content 
ranging from less than 0.1 g/100 mL to 3.6 g/100 mL, except for 
condensed milk with g/100 mL fat, and a cream sample with 33 g/100 
mL fat. Most of the samples were of cow origin (51), with a minor 
representation of goat and sheep milk (two from each), ensuring a 
comprehensive analysis of various types of milk. The sample set also 
included dairy derivatives such as coffee with milk (2), kefir (1), and 
yoghurt (1), providing a broad examination of milk and dairy products.

Additionally, for the calibration curve method, a set of UHT cow milk 
reference standard from QSE-GmbH (Wolnzach, Germany) was pur
chased, covering the range of fat content within the samples (0.06 g/ 
100 mL, 1.52 g/100 mL, 3.48 g/100 mL and 4.33 g/100 mL).

Before NMR measurements, 320 μL of a 1 g/100 mL solution of 3- 
(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TMSP) in deute
rium oxide (D2O), both obtained from Sigma-Aldrich (St Louis, MO, 
USA), serving as the internal standard and locking solvent, respectively, 
were added to 680 μL of the sample. The mixture was vortexed at room 
temperature for 5 min. The resulting solution was then transferred 
directly into the NMR tube, which was sealed and pre-warmed at 32 ◦C 
in an NMR tube heater for 1 min before analysis.

2.2. Instrumentation and software

NMR experiments were carried out on a 100 MHz benchtop NMR 
system (Nanalysis Corp., Alberta, Canada) equipped with a 24-position 
autosampler and sample heater. Spectroscopic analysis was performed 
using the presaturation technique (Presat) to suppress the water signal at 
an operating frequency of 102.5 MHz and a spectral width of 1500.20 Hz 

J.R. Belmonte-Sánchez et al.                                                                                                                                                                                                                 LWT 212 (2024) 117000 

2 



(15.0 ppm). A pulse angle of 30◦ was used for excitation of the sample. 
To ensure optimal water suppression, a total pre-saturation time of 2 s 
was applied prior to the acquisition of the NMR signal. The bandwidth 
for the presaturation was set at 150 Hz to cover the water resonance 
without affecting the other signals of interest in the spectrum.

A total of eight scans were applied per analysis, except for samples 
labelled as skimmed, where 16 scans were used. While increasing the 
number of scans affects the signal intensity, this does not impact our 
calculations, as they are relative to the internal standard used; therefore, 
normalization was applied later to adjust the results. An interscan delay 
time of 30 s was used to allow complete relaxation of the nuclei, 
ensuring that each scan was acquired under fully relaxed conditions. 
Each milk acquisition lasted approximately 4 min under the conditions 
of analysis described above (8 min, approximately, for skimmed sam
ples). Shimming was performed every three samples to ensure a uniform 
magnetic field throughout the series of measurements. All samples were 
measured at 32.0 ± 0.1 ◦C and under non spin conditions.

Each spectrum was manually calibrated against the TMSP standard 
at δ 0.0 ppm as a reference point. Prior to Fourier transformation, the 1H 
NMR spectra received a line broadening application of 0.3 Hz to smooth 
the data. The spectra were automatically phased, baseline-corrected, 
normalized and integrated using MestReNova 10.0.2 software (Mestre
lab Research SL, Santiago de Compostela, Spain).

Multivariate optimization was performed using MODDE™ Pro soft
ware version 13.0.2 (Sartorius AG, Göttingen, Germany), which facili
tated a structured exploration of the experimental conditions (Nguyen 
et al., 2024; Sagmeister et al., 2020). Chemometric analyses (PLS-R) 
were performed with SIMCA 17 software (Umetrics, Umea, Sweden), 
while the ANN model was developed using Python (v3.11) and the Keras 
library (v2.2.4) with a TensorFlow backend (v1.13.1, CUDA 10.1).

2.3. Calibration curve method

The proposed 1H NMR method to determine fat content was vali
dated in terms of linearity (R2), selectivity, precision, limit of quantifi
cation (LOQ), accuracy (recovery), and working range (0.06 g/100 mL, 
1.52 g/100 mL, 3.48 g/100 mL and 4.33 g/100 mL) (Bachmann, 2023). 
Integration of the signals corresponding to fat was performed within the 
spectral range of 0.5–2.5 ppm.

Accuracy and precision were evaluated with fortified samples (from 
available samples at a concentration of 0.1 g/100 mL) at three con
centration levels, skimmed (0.06 g/100 mL), semi-skimmed (1.5 g/100 
mL) and whole (3.6 g/100 mL), with each of the three replicates. The 
LOQ was established at the lowest point of the working range. Impor
tantly, determining LOQ required achieving a signal-to-noise ratio 
greater than 10, ensuring reliable quantification (Belmonte-Sánchez 
et al., 2019; FDA, 2019).

2.4. Partial least squares regression

For the investigation of UHT milk, an initial unsupervised statistical 
approach was applied to uncover patterns within the data set. Principal 
Component Analysis (PCA) was employed for exploratory purposes, 
allowing for the visualization of relationships between the milk samples. 
Hotelling’s T2 analysis and the Distance to Model in X-space (DModX) 
plot were employed to detect and remove outliers, ensuring the 
robustness of the statistical analysis.

Following this exploratory phase, making use of supervised tech
niques, a PLS-R model was developed and evaluated using an arbitrary 
data partitioning strategy, in which the data set was split into a training 
set comprising 80% of the data and a validation set comprising the 
remaining 20%. Within the training set, the model was tuned using a 
seven-fold cross-validation, ensuring that the model was iteratively 
optimized. During this process, the optimal number of components in 
the latent dimensions (NSCs) was determined by monitoring the R2Y and 
Q2Y values as the number of NSCs increased. The number of NSCs was 

considered optimal when these values stabilized, meaning that adding 
more components no longer significantly improved the model’s ability 
to explain or predict the data.

The goodness of fit of the model was assessed by the determination 
coefficient (R2X) for the training set and the explained variance (R2Y), 
reflecting the model’s ability to capture the variance in the data. Addi
tionally, its predictive performance in the validation set was evaluated 
using the predictive ability parameter (Q2Y).

Analysis of variance coupled with cross-validation (ANOVA-CV) 
provided a detailed understanding of the model’s variance components, 
enhancing insight into its predictive power and statistical significance.

The root mean square error of cross-validation (RMSE-CV) was 
calculated to gauge the model’s predictive accuracy by measuring the 
average deviation of predictions from actual values during cross- 
validation, offering a precise measure of performance on unseen data.

To further validate the precision and accuracy of the results, the 
developed model was tested against fortified samples (testing set) in 
water at three concentration levels: skimmed (0.06 g/100 mL), semi- 
skimmed (1.5 g/100 mL), and whole (3.6 g/100 mL), with each con
centration tested in three replicates.

2.5. Artificial neural network (deep learning)

For the quantitative analysis of UHT processed cow’s milk, a feed
forward ANN was utilized to address the nonlinear complexities of the 
data. The model was operated on an NVIDIA Titan RTX GPU for 
improved computational efficiency. The architecture featured an input 
layer of 21 neurons and a hidden layer of 32 neurons with Rectified 
Linear Unit (ReLU) activation, including dropout layers at a rate of 0.2 to 
mitigate overfitting (Fig. S-1). Compiled with the RMSprop optimizer 
and the mean squared error loss function, ANN supported regression 
analysis through a single-neuron output layer with linear activation.

Training involved 30 epochs with a batch size of 8, and model 
validation on unseen data assessed generalization capabilities. RMSE-CV 
and mean absolute error (MAE) measured predictive accuracy, while 
learning curve analysis identified optimal complexity and training 
duration to balance pattern recognition and avoid overfitting, ensuring 
robust evaluation and accurate predictions of the UHT milk fat content.

As an additional step to ensure the reliability of the analysis, the 
performance of the ANN model was assessed by applying them to the test 
set of fortified samples (see section 2.3) on a gradient of fat concentra
tions: skimmed (0.06 g/100 mL), semi-skimmed (1.5 g/100 mL), and 
whole (3.6 g/100 mL), performing this test in three separate measure
ments for each concentration level.

3. Results and discussion

3.1. Optimization of NMR acquisition conditions

Considering the numerous variables involved in this technique, such 
as relaxation times, signal suppression considerations, bandwidth for 
suppression, the ratio of sample to solvent or the number of scans, 
among others, a design of experiments approach has been employed for 
optimization (Peris-Díaz & Krężel, 2021). A central composite design 
(CCD) was used in the response surface methodology (RSM) framework 
to optimize the parameters of desktop NMR spectroscopy, focusing on 
minimizing the spectral distortion of the specific spectral region of the 
predominant water signal at δ 4.7 ppm.

The optimization process considered four key parameters: total 
presaturation time, bandwidth, pulse angle, and sample-solvent ratio, 
each within specified ranges. The total presaturation time was varied 
from 1 to 4 s, bandwidth from 30 to 200 Hz, pulse angle from 30 to 90◦, 
and sample-solvent ratio from a minimum of 20:80 v/v to a maximum of 
80:20 v/v. The primary objective was to identify conditions under which 
the integrated area of a designated spectral region would be as close to 
zero as possible, indicating minimal spectral distortion. This approach 
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emphasized that the significant variable was the integrated area quan
titatively measured, rather than a characteristic visually assessed.

Given the number of variables and the aim of a minimum number of 
degrees of freedom of 5, with a restriction on the maximum number of 
runs set at 15, the MODDE™ software recommended a central composite 
face (CCF) design as the most suitable for this study. Table S-2 details all 
experiments carried out within the framework of this study.

The optimal conditions identified through this systematic approach 
were a sample-solvent ratio of 32:68 v/v, a pulse angle of 30◦, a total 
presaturation time of 2 s, and a bandwidth of 150 Hz. Fig. S-2 shows the 
remarkable differences obtained between different acquisition condi
tions, where 9 spectra have been represented to avoid saturating the 
image with spectral overlap. These settings were found to significantly 
reduce the spectral distortion, thereby enhancing the quality and reli
ability of the NMR spectra obtained. Remarkably, under these optimized 
conditions, no distortions were observed throughout the spectrum, with 
particular emphasis on the critical region of fats in milk, which ranged 
between δ 2.8 and δ 0.5 ppm (Soyler et al., 2021), and they remained 
undistorted.

3.2. Fat content determination

First, for the baseline correction, the Whittaker algorithm was uti
lized, effectively normalizing the baseline of the spectral signals to zero. 
This approach ensured that any negative distortions encountered during 
spectrum alignment did not detract from the analysis, allowing exclusive 
consideration of positive value peaks (Cobas, 2018).

Subsequently, selectivity was evaluated to identify potential in
terferences or impurities that arise from variations in the types of milk 
(cow, goat, or sheep) or between different brands. This involved 
comprehensive spectral profiling of all final spectra, using certified UHT 
cow milk reference standards for comparison. The investigation covered 
the entire chemical shift range relevant to the fat content of UHT milk, 
ensuring that no signal overlap or confuse with either the signals of 
interest or the reference standards. This process confirmed the high 
selectivity of the method across the range of selected whole milk prod
ucts. Furthermore, the analysis was extended to dairy derivatives, such 
as coffee with milk, condensed milk, cream, kefir, and yoghurt. Due to 
their unique spectral profiles, condensed milk, cream, yoghurt, and kefir 
were excluded from further modelling to preserve the focus and integrity 
of the analysis, thus limiting the application of the present study to the 
rest of the 51 remaining samples (Fig. 1).

Particularly for skimmed milk, where signal resolution was crucial, 
the use of additional scans significantly improved signal clarity. For 
example, by doubling the number of scans from 8 to 16, a marked 
improvement in the quality of the spectral data was observed. This 

increase, although extending the analysis duration by approximately 4 
min per sample, proved to be a valuable adjustment. This strategic in
crease in scans represented a practical approach to optimizing the 
analytical process, ensuring that even samples with a low-fat content can 
be accurately quantified.

3.2.1. Calibration curve
The working range of the calibration curve was established through 

triplicate measurements at four concentrations (0.06 g/100 mL, 1.52 g/ 
100 mL, 3.48 g/100 mL and 4.33 g/100 mL) (Fig. S-3), ensuring it 
encompassed the typical levels of fat content found in these milk cate
gories through the integration of signals corresponding to fat within the 
spectral range of 0.5–2.5 ppm (Soyler et al., 2021).

The linearity of the calibration curve was critically assessed using R2, 
which revealed excellent linearity (R2 = 0.993) within the defined 
range. For samples exceeding the upper limit of the working range, 
simple water dilution techniques could be employed, allowing for ac
curate analysis without compromising the method’s integrity.

The precision and trueness results are shown in Table 1. For semi- 
skimmed and whole milk, precision and accuracy metrics (16.2% and 
9.0% for semi-skimmed, 7.9% and 3.7% for whole milk, respectively) 
demonstrated good alignment with the stringent criteria set (Bachmann, 
2023; FDA, 2019), supporting the method’s ability to deliver consistent 
and reliable results for these milk fat concentrations. However, the 
values obtained for skimmed milk, with a precision of 34.1% and an 
accuracy of 25.3%, were significantly higher.

Furthermore, in anticipation of creating a prediction ensemble for 
multivariate models with samples, an analysis of these same samples 
was performed using the calibration curve for comparison purposes with 
samples of the models. Table 2 shows the results of the prediction set and 
the variance compared to the labelled values. It includes a mean per
centage relative error (Diff. (%)), which was calculated as (observed 
value− true value)/true value × 100, of 5.2% for the calibration curve 
method.

3.2.2. Partial least squares regression
Before PLS-R analysis, the spectra acquired from the UHT milk 

samples were subjected to a bucketing process with a resolution of 0.05 
ppm, resulting in a data set comprising 43 distinct variables. This spe
cific bucket size was chosen on the basis of a thorough examination of 
the resulting spectral data to ensure that crucial information, such as 
signal multiplicity, was preserved. Furthermore, retrospective analyses 
conducted on a trial basis revealed that this bucketing resolution 
consistently yielded the most reliable and informative results.

In a preliminary phase, a PCA was carried out on milk samples to 
discern possible variations between the groups. Logarithmic trans
formation was used for all data sets, obtaining values in a smaller range 
without masking the effect of small values in the data set and allowing 
an optimal variable range for the proposed model (Lubes & Goodarzi, 
2017). From 153 spectra, corresponding to three replicates each of 51 
samples, 51 averaged observations were obtained for further analyses. 
Using Hotelling’s T2 and DModX analyses, 7 outliers (samples 5-Milk, 
12-Milk, 9-Milk, 24-Milk, 36-Milk, 50-Milk, and 55-Milk) were identi
fied and excluded to refine the statistical models. These 7 outliers cor
responded to 21 observations, resulting in a total of 132 samples after 
their removal.

The PCA revealed significant variability in the fat content of milk and 
the high fit of the model, with R2 exceeding 98% and a Q2 of 91% using 
only four NSCs. The score plot confirmed the reproducibility of the an
alyses, bolstering confidence in the findings (Fig. S-4). The PLS-R anal
ysis identified significant components to modelling the fat content in 
milk, leading to the creation of a prediction curve by plotting predicted 
sample concentrations against their known values (Fig. 2).

ANOVA-CV underscored the model’s efficacy in explaining the 
variance of fat content, with a total sum of squares of 43 and a regression 
sum of squares of 39.2, highlighting the model’s explanatory strength. 

Fig. 1. Representation of spectral profiles obtained from different dairy de
rivatives by 1H NMR, including whole sheep’s milk, whole cow’s milk, coffee 
with whole milk, whole goat’s milk, condensed milk, kefir and yoghurt, 
showing differentiation of UHT milk and justification for its exclusion (’x’ 
symbol) from further analysis.
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An F-statistic of 216.6 and a significant p-value of 1.59e-22 emphasized 
the role of regression in explaining variance (Table S-3). The disparity in 
standard deviations between the regression and residual components 
further validated the precision of the model.

Collectively, these results underscore the robustness and precision of 
the PLS-R model in quantifying the dairy fat content, showcasing its 
significant analytical potential. With 44 averaged observations (35 for 
the training set and 9 for the validation set, as indicated in Table S-1), 
four NSCs (Fig. S-5), a R2Y of 0.98, a Q2 of 0.914, and a RMSE-CV of 
0.39, the findings highlight the substantial capability of the model in the 
analysis of dairy products. Furthermore, the analysis of overfitting was 
reinforced by a permutation test, which yielded low values (R2 = 0.16 
and Q2 = − 0.17), further affirming the robustness of the model and its 
ability to generalize beyond the training data. The results obtained for 
the validation set showed a difference value with respect to the labelling 
value of − 2.2%, improving the values previously obtained by quantifi
cation of the calibration curve (Table 2).

The application of machine learning PLS-R for the milk fat content in 
the test set at three concentration levels demonstrated precision and 
accuracy results that, while variable, represented a significant 

improvement over the traditional calibration curve method (Table 1). 
The method demonstrated a significant improvement in the quantifi
cation of fat content in relation to the calibration curve, with precision 
values of 18.9%, 12.4%, and 4.8% for skimmed (0.06 g/100 mL), semi- 
skimmed (1.5 g/100 mL), and whole (3.6 g/100 mL) milk, respectively. 
The accuracy across the tested concentrations was also notable, showing 
absolute values of 17.7%, 12.6%, and 2.1% for each type of milk, 
respectively.

3.2.3. Artificial neural network
A calibrated feedforward ANN was applied, using bucketing at 0.1 

ppm after showing improved results compared to the previous bucketing 
at 0.05 ppm used in the PLS-R analysis, for NMR spectra analysis (21 
variables) to quantify the fat content of UHT milk. The data set, con
sisting of 132 averaged samples after the extraction of outliers, was 
initially divided into a training set and a validation set with the 
remaining samples from the previous exploratory PCA analysis after 
extraction of the outlier (35 for the training set and 9 for the validation 
set). The process involved iterative parameter optimization, focusing on 
balancing complexity, computational efficiency, and performance. 
Using Python, a grid search method evaluated various configurations, 
identifying the optimal setup based on activation function, batch size, 
optimizer, and number of hidden layers (Jiang & Xu, 2022).

ReLU was selected for its efficiency in maintaining gradient flow and 
learning complex patterns without excessive computational demands 
(Sa’adah, 2023). The optimal batch size was determined to be 8, 
balancing computational load and learning stability. RMSprop was 
chosen as the optimizer for its adaptive learning rate, which improves 
the convergence speed. A single hidden layer proved sufficient for the 
model, adhering to the parsimony principle, while seven-fold cross-
validation and strategic dropout layers combated overfitting, improving 
generalizability.

The chosen model configuration featured ReLU activation, an eight- 
unit batch size, an RMSprop optimizer, and one hidden layer, which 
combined theoretical and empirical efficacy for the quantification of fat 
content in UHT milk. Training ended within ten epochs, indicating rapid 
convergence of the model. Fig. S-6 showcases the model’s pattern 
recognition capability and predictive accuracy, with visuals illustrating 
loss trends and a scatter plot of predicted versus actual fat content. The 

Table 1 
Comparative analysis of the results of fat content quantification in three replicates of UHT milk fortified samples using calibration curve, machine learning and ANN 
methods.a

Milk type Calibration curve PLS-R ANN

Precision (%) Trueness (%) Precision (%) Trueness (%) Precision (%) Trueness (%)

Skimmed 34.1 25.3 18.9 − 17.7 14.9 − 7.3
Semi-skimmed 16.2 9.0 12.4 12.6 10.2 − 0.3
Whole 7.9 3.7 4.8 − 2.1 6.9 − 2.1

a Abbreviations: ANN: Artificial neural network; PLS-R: Partial least squares regression.

Table 2 
Fat content in the prediction set of commercial UHT milk samples obtained by calibration curve, PLS-R, and ANN, including the percentage relative error between the 
observed and true values (Diff.).a

ID Labelled fat content Calibration curve Diff. (%) PLS-R Diff. (%) ANN Diff. (%)

1-Milk 3.6 3.5 − 3.2 3.6 0.7 3.6 − 0.3
6-Milk 1.6 1.7 6.4 1.6 − 3.4 1.6 0.2
15-Milk 0.3 0.4 17.3 0.3 − 11.7 0.3 2.8
18-Milk 3.6 3.6 0.6 3.5 − 1.9 3.6 − 1.3
31-Milk 0.3 0.3 24.0 0.2 − 3.2 0.3 − 0.9
41-Milk 1.6 1.6 − 0.3 1.5 − 7.3 1.6 0.1
42-Milk 0.3 0.3 − 5.3 0.3 12.6 0.3 0.2
44-Milk 3.6 3.5 − 1.7 3.5 − 1.9 3.5 − 1.7
52-Milk 1.6 1.7 8.8 1.5 − 3.7 1.6 − 0.1
Mean Diff. (%) – 5.2 – − 2.2 – 0.1

a Abbreviations: ANN: Artificial neural network; PLS-R: Partial least squares regression.

Fig. 2. Comparison of expected vs. actual fat content in UHT milk samples 
obtained by PLS-R.
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RMSE-CV value of 0.25 offered insight into the expected error when the 
model was applied to novel data within this range. The results obtained 
for the validation set, together with their differences with respect to the 
labelling value, for each of the methods applied, are shown in Table 2. 
The table shows that the best overall results were obtained with the 
application of ANNs, with an average value of 0.1%.

Furthermore, the results obtained by applying the ANN approach to 
quantify fat content against the set of tests (fortified samples) at three 
concentration levels were particularly promising (Table 1). With preci
sion values of 14.9% for skimmed, 10.2% for semi-skimmed, and 6.9% 
for whole milk, together with accuracy values of − 7.3% for skimmed, 
− 0.3% for semi-skimmed, and − 2.1% for whole milk, this method 
demonstrated a significant improvement in both parameters compared 
to previous methodologies.

3.3. Qualitative determination of lactose content

Although the primary focus was the determination of the fat content 
in milk, spectral regions around δ 3.1 and δ 4.0 ppm, typically related to 
lactose (Soyler et al., 2021), played an unexpectedly important role in 
the determination of lactose. In particular, without specific optimization 
for these regions, a binary classification model that could differentiate 
between lactose and lactose-free milk was developed, with notable 
preliminary success, such as the PLS Discriminant Analysis (PLS-DA) 
model depicted in Fig. 3.

Despite the fact that the data set was not being specifically balanced 
for this purpose, with only 15 lactose-free samples out of a total of 50 
(after removing outliers), the results clearly indicated a robust classifi
cation between lactose-containing and lactose-free milk. This was 
particularly evident in the distinction between lactose-free milk and 
both semi-skimmed and whole milk, as well as between lactose-free and 
skimmed milk. The model’s validation process was carefully designed 
ensuring that all replicates for each sample were treated together in each 
fold during a seven-fold cross-validation, which minimized intra-sample 
variability and allowed for the detection of potential outliers within the 
replicates.

In addition to the classification accuracy, which reached 98.67% 
(Table S-4), the results were further validated with Fisher’s probability 
test, yielding an of 2.7e-33, confirming the statistical significance of the 
classification. The validation results, including the permutation test to 
prevent overfitting, are summarized in Table S-5, further demonstrating 
the model’s reliability.

The model performed robustly, and the accuracy of the classification 
underscores the strength of the approach, suggesting that the differen
tiation observed between lactose-containing and lactose-free milk is 
reliable and significant. This result opens the door to further in
vestigations into the underlying spectral differences that drive this 
classification.

3.4. Environmental sustainability analysis

To further emphasize the commitment to sustainable practices, an 
environmental sustainability analysis was incorporated into the study, 
compared to other established methods. This analysis was performed 
using the Analytical Greenness (AGREE) calculator, a tool designed to 
evaluate environmental and occupational hazards associated with 
analytical procedures. AGREE evaluates the “greenness” of analytical 
methods based on the 12 principles of green analytical chemistry, 
providing a comprehensive overview of the environmental impact of the 
present research approach (Pena-Pereira et al., 2020).

The GC-MS and GC-FID methods were chosen for their comparison 
with the method proposed in this study in terms of analytical greenness 
(Chen et al., 2023; Danudol & Judprasong, 2022). The main charac
teristics of the three methods compared are shown in Table S-6. In 
addition, the pictograms obtained by using the AGREE software to 
evaluate them are represented in Fig. 4.

Environmental sustainability revealed significantly favorable results 
for the benchtop NMR method, with a score of 0.73, compared to the 
lower scores achieved by GC-MS (0.36) and GC-FID (0.33). This supe
riority of benchtop NMR was particularly evident in critical aspects, 
such as sample preparation stages, automation or miniaturization, and 
notably in the absence of derivatization and the use of toxic agents in 
sample preparation. The latter point highlighted a significant reduction 
in waste generation, demonstrating a considerably “greener” environ
mental profile. However, the AGREE analysis highlighted areas for 
improvement in all the techniques analyzed, such as the need for off-line 
measurements due to the inability to conduct in-situ analysis, and the 
energy demands. It was important to mention that AGREE calculator did 
not distinguish between benchtop and conventional cryogen-cooled 
superconducting electromagnet NMR systems. As such, we considered 
that the actual energy consumption of benchtop systems would have 
been lower due to their use of permanent magnets. Nevertheless, even in 
the worst-case scenario, where the higher energy consumption of con
ventional systems was assumed, the benchtop NMR method still 
demonstrated a highly favorable environmental profile.

4. Conclusions

This study presents, for the first time, the simultaneous use of three 
different quantification models to determine fat content in UHT milk 
samples using benchtop NMR. This comparison provided a better un
derstanding of the differences between traditional calibration curve 
applications, and PLS-R and ANNs based machine learning algorithms 
for estimating fat content in skimmed, semi-skimmed and whole milk. In 
analyzing the most challenging cases, such as skimmed milk, the ANN 
method exhibited better precision and accuracy (− 14.9%, 7.3%) 
compared to both the calibration curve method (34.1%, 25.3%) and the 
PLS-R approaches (18.9%, − 17.7%). This trend in fat quantification was 
again observed, with ANN consistently achieving better results in semi- 
skimmed (precision 10.2% and accuracy − 0.3%) and whole milk 

Fig. 3. Example of the spectral analysis obtained by benchtop NMR in the target region (left) and the binary classification PLS-DA (right) of lactose and lactose- 
free milk.
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(precision 6.9% and accuracy − 2.1%). All proposed methods have been 
adequately validated, demonstrating suitable values for selectivity, 
linearity within the working range, precision and accuracy.

Regarding sample analysis, the comparative analysis of the methods 
demonstrated a commendable level of accuracy for skimmed, semi- 
skimmed, and whole milk, with the overall average differences from 
the labelled values being 5.2%, − 2.2%, and 0.1%, respectively. This 
accuracy underscored the potential of these methodologies to meet the 
rigorous demands of quality control within the dairy industry. The 
extension of the study to goat, sheep and coffee-flavoured milk further 
attests to the versatility and reliability of the methods in accurately 
determining the fat content, corresponding closely with the product 
labels.

Additionally, the application of machine learning to full spectra, 
rather than specific regions, has shown potential for binary classification 
models such as PLS-DA, successfully distinguishing between lactose and 
lactose-free milk, suggesting broader applications for future research.

In light of comparative analysis with established techniques such as 
GC-MS and GC-FID for quantifying fat content in milk samples, the 
AGREE analysis highlighted the exceptional greenness score of 0.73 for 
the benchtop NMR method, showcasing a robust commitment to envi
ronmentally friendly research practices. This comparison showed the 
significant sustainability advantages of benchtop NMR over these 
traditional techniques, with benefits including reduced sample prepa
ration stages, enhanced automation and miniaturization, and the elim
ination of toxic reagents and derivatization processes. By markedly 
outperforming established techniques in terms of environmental impact, 
benchtop NMR cements its leading position in promoting a greener 
approach to quantifying fat content in milk.
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